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(Received November 6 ,  1970) 

A method is discussed for calculating internal stresses in rubber-modified polymers and for 
predicting elastic constants as well as a critical stress for onset of crazing. A simple model 
is used to simulate the structure and behavior of the composite, and the necessary assump- 
tions are listed. It is possible to account for interactions between particles which to date 
has been neglected in other analyses. 

INTRODUCTION 

Many investigations have been performed to study the toughness and 
mechanisms of toughness enhancement in rubber modified glassy polymers 
such as ABS or rubber-modified acrylic po1ymers.l -9 These polymers 
represent an unusual class of composites since most composites consist 
of a rigid inclusion surrounded by a more ductile or less hard matrix. In this 
case, a rubbery particle is filling a harder or more rigid matrix. Since the 
modulus of elasticity of the rubber is much less than that of the glassy 
polymer matrix and Poisson’s ratio is greater than that of the matrix, the 
modified polymer will have a decreasing modulus and increasing Poisson’s 
ratio as rubber filler content is increased. Of course the most significant 
benefit is that the toughness of the relatively brittle matrix polymer (e.g. 
styrene-acrylonitrile) can be greatly increased. The tensile strength of the 
matrix is reduced but the ultimate elongation is increased as the rubber 
content is increased. The end result is a compromise and a moderately hard 
material is produced with good impact strength as a result of the rubber 
reinforcement. 

The mechanism of the toughness enhancement and energy absorption 
capability of this material is believed related to internal crazing of the matrix 
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96 L. J. BROUTMAN AND G. PANIZZA 

throughout the volume caused by stress concentrations around the finely 
dispersed rubber  particle^.^^^^^^^ This crazing also manifests itself in the 
familiar stress whitening of rubber modified polymers. Since it is believed 
that stress intensifications around the particles are responsible for the crazing 
or cold drawing of the matrix adjacent to the rubber particles, it would be 
desirable to analyze for the internal stresses around the rubber particles. 
A finite element stress analysis method is presented in this paper for calcu- 
lation of these internal stresses. Mat0nis~7~ has calculated the stresses 
surrounding a single inclusion in an infinite medium and has reported on the 
stresses at the interface and in the matrix. He was particularly interested in 
the effect of the interface or more properly the interphase between spherical 
filler and matrix and the effect of interphase properties on stresses around 
the inclusion. 

The finite element technique used in this study is not limited to the analysis 
of a single inclusion in an infinite matrix but can be utilized to analyze 
multi-inclusion problems and results are presented here for rubber (filler) 
contents as high as 50 percent. In addition to determining internal stresses 
for various filler volume fractions and filler properties, the composite 
modulus of elasticity, Poisson's ratio and critical stress for stress whitening 
or yield point can be determined. 

FINITE ELEMENT METHOD 

The finite element method discussed in detail elsewherel1>l2 has been 
employed here as a numerical stress analysis technique to analyze for the 
internal stresses in a rubber sphere filled composite material. A computer 
program for axisymmetric solids (solids of revolution) was used and a 
Univac 1108 computer generated the data. 

The finite element method reduces the continuous structure or medium 
to a system of discrete elements. In the finite element approximation of 
axisymmetric solids, the continuous structure or medium is replaced by a 
system of axisymmetric elements, which are interconnected at nodal circles. 
It has been assumed that the rubber reinforced polymer (assumed to possess 
symmetry) could be approximated by a unit cell as shown in Figure 1 which 
when rotated 360" around axis A D  produces a hemisphere embedded within 
a cylinder. The interparticle spacing is equal to 2 (rl - r2) where rl and r2 are 
shown in Figure 1. The volume percent of filler particles (radius = r2) can 
be altered by changing the ratio rJrl (note AB = BC = C D  = A D  in 
Figure 1) and the volume percent filler can be calculated from r2 and rl. 
It should be noted that this axisymmetric representation of the rubber-filled 
polymer only approximates the real packing and structure of the composite. 
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FIGURE 1 Typical cell to represent rubber modified polymer ( A B  = BC = CD = AD).  

These axisymmetric cells (Figure 1)  do not constitute an actual repetitive 
unit but are related in their dimensions to the interparticle spacing. A three- 
dimensional computer program without restrictions (e.g. using tetrahedral 
elements) would have to be used to truly model a particulate composite. 

The finite elements used for the case rz/rl  = 0.36 ( Vf = 3.03 %) are shown 
in Figure 2. The radial and tangential stresses as well as the principal stresses 
and their directions are determined for each element. The analysis leading to 

~ ~ - I' ---I 
FIGURE 2 Finite element grid for rz/rl = 0.36 (vj = 3.03 %). 
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98 L. J. BROUTMAN AND G .  PANIZZA 

the determination of these stresses begins with the assumption for the 
displacement field within each element : 

U r  (r,z) = b, + b,r + b,z 

ut (r,z) = b, + b,r + b,z 

(1) 

(2) 

This linear displacement field assures continuity between elements, since 
“lines which are initially straight, remain straight in their displaced position”. 
Based on this assumption and using equilibrium equations for the elements, 
and the relations of continuity between elements, it is possible to determine 
ur, uz for each nodal circle and the stresses in each element. A computer 
program written by Wilson permitted the application of this method to our 
problem.13 

In order to make the above calculations the following assumptions were 
made concerning the material: 

1)  Rubber particles are spherical and of uniform size; packing of particles 
can be represented by axisymmetric element (Figure 1). 

2) Both filler and matrix materials obey elastic stress-strain relationships. 
3) Perfect bonding exists between filler and matrix (continuity of displace- 

ments at the interface). 

APPLICATION OF THE FINITE ELEMENT METHOD 

The finite element method permits the calculations of the stress and displace- 
ment distributions in the typical region ABCD (Figure 2) for certain loading 
and boundary conditions. It will be assumed here that the composite is 
stretched by a force in the z direction and that there are no applied tractions 
in the r direction. By symmetry, on the boundary ABCD 

thus the sides A B  and BC remain parallel to their original positions after a 
displacement due to the force in the z direction while AD and DC remain 
fixed. Thus, AB and BC will undergo normal displacements and the tractions 
in the r direction must be zero so that 

Trz  = Tzr = 0 

ja,dz = 0 
BC 

where the integral is replaced by a summation in the finite element method. 
In order to satisfy the above boundary conditions the following procedure 

is ~ s e d ’ ~ ~ ~ ~ :  

1) Find the stress and displacement distribution (1) such that 
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MICROMECHANICS STUDIES OF RUBBER-REINFORCED GLASSY POLYMERS 99 

( ~ ~ 1 ) ~ ~  

( ~ ~ 1 ) ~ ~  = 0 (symmetry) 
(Uri)BC 

(urdAD = 0 (symmetry) 
Trz  = T~~ = 0 (on ABCD) 

= 1 (arbitrarily specified unit displacement) 

= 0 (specified displacement condition) 

From these boundary conditions, 
and displacements url, uZl in all nodal circles are determined. 

and uzl are determined in all elements 

2) Find the stress and displacement distribution (2) such that 
( ~ ~ 2 ) ~ ~  

( U Z Z ) ~ ~  = 0 (symmetry) 
(urdAD = 0 (symmetry) 
( u , . ~ ) ~ ~  
rr2 = rzr = 0 (on ABCD) 

= 0 (specified displacement condition) 

= 1 (arbitrarily specified unit displacement) 

3) The two above stress and displacement distributions are superimposed 
to obtain 

cr = u1 + ka, 
u = u1 + ku, 

where k is determined such that the net force in the r direction along BC is 
zero. Thus 

so 

The stress on A B  is thus 

and the displacement is 

CALCULATION OF POLYMER COMPOSITE MODULUS 
OF ELASTICITY AND POISSON'S 

To calculate the stiffness or modulus of elasticity of the rubber-modified 
plastic composite, the average stress on the boundary AB is calculated, or 
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100 L. J. BROUTMAN AND G. PANIZZA 

JazdA 

A 
ijz = A- - - ( 5 2 ) ~ ~  

here A is the area of the top of the cylinder in the finite element analysis 
and the integral is replaced as a summation as follows: 

Where ri and r t - l  are the radii to the nodal circles that define the elements 
on the top of the cylinder, n is the number of such circles, and uz is the 
corresponding normal stress in each element. 

The modulus is defined as 
E = ?  

CZ 

where the strain used is calculated from the specified boundary displacement 

Poisson’s ratio was calculated from the displacements 

u = u1 + k u 2  

From Figure 1, the displacement of boundary AB is 

(Uz)AB = (&l)AB + IdUz2)AB 

however ( & ~ ) A B  = 0, thus 
(uz)AB (&l)AB 

Also, the displacement of boundary BC is 

but 
( u r ) B C  = ( u r l ) B C  + k ( u r z ) B C  

(Ur1)BC = 0, thus 
(Ur)BC = k (&2)BC 

Poisson’s ratio can be written as 

- 
BC 
AB 

v = [kl - = Ikl ( B C = A B )  
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MICROMECHANICS STUDIES OF RUBBER-REINFORCED GLASSY POLYMERS 101 

CALCULATION OF COMPOSITE CRITICAL STRESS 

A composite critical stress can be calculated which might be considered the 
fracture strength for a brittle composite, the yield point for a ductile 
composite or in the case here the stress required to initiate internal crazing 
or cold drawing which manifests itself as stress whitening of the rubber- 
modified composite. 

In order to calculate this composite critical stress, it was assumed that the 
composite would reach this stress as soon as an element of the matrix reached 
a large enough value of stress to cause crazing of the matrix. The spherical 
inclusion causes large stress concentrations and it is reasonable to expect that 
the critical condition will be achieved at the filler-matrix interface where the 
stresses are large. Since the matrix is subjected to combined stresses (triaxial) 
a suitable failure or crazing criterion has to be used in order to predict 
matrix failure or crazing under combined stresses. The Von Mises failure 
criterion or distortion energy theory was selected which is represented as 
follows 

8 [(q - .212 + (.Z - U3l3 + ( 0 3  - = (.*I2 
where u1 u2 and u3 are principal stresses at the point in question and u* is the 
critical stress in simple uniaxial tension. 

This criterion is then applied by determining which element has the 
maximum value of distortion energy for the calculated applied stress a, 
found on boundary AB. This value of distortion energy may not exceed the 
value needed to fail or craze the matrix materials (u*)~ and thus the composite 
critical stress is calculated from 

where U,,, is the maximum value of distortion 
arbitrary specified displacement which produces 
Sc is the composite critical stress. 

energy determined for the 
the average stress &, and 

INTERNAL STRESSES 

The internal triaxial stresses have been calculated throughout the volume (in 
each element shown in Figure 2) of rubber-modified glassy polymers. The 
stresses have been calculated for rubber volume contents up to 44 percent. 
This corresponds to a minimum in interparticle spacing of 0.22r2 (where 
r, = radius of rubber particle). In addition, the stresses have been investigated 
assuming various properties for the rubber particle to determine the effect 
of Poisson's ratio and elastic modulus on these stresses. 
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102 L. J. BROUTMAN AND G. PANIZZA 

For the calculations presented in this paper, the following component 
properties have been assumed : 

Polymer matrix : E (modulus of elasticity) = 400,000 psi 
v (Poisson's ratio) = 0.35 

rubber filler: 1) E = 3000 psi 
v = 0.48 

2) E = 3000psi 
v = 0.35 

3) E = 3000 psi 
v = 0.50 

4) E = 1OOOpsi 
v = 0.48 

The volume percent filler can be determined from the ratio r2/rl (Figure I)  
by calculating the volume of the hemisphere contained within the cylinder 
when the cell in Figure 3 is rotated 360" around axis A D .  The following 
rz/rl ratios and corresponding filler contents were used in this analysis: 

0.357 3.03 
0.502 8.45 
0.615 15.51 
0.714 24.2 
0.833 38.4 
0.870 43.8 

The stresses around the interface between the rubber particle and glassy 
matrix are shown in Figures 3, 4, and 5. The results shown in these figures 
are for the rubber filler with E = 3000 psi and v = 0.48 except when indicated 
in the figure. The stresses are presented as a ratio, u/Oz, where Oz can be 
considered the average stress applied to the polymer composite. Thus, the 
ratio represents the stress concentrations around the rubber particles. 
The stress system is defined in Figure 3. From Figure 2 it can be seen that 
there are nine finite elements around the interface and the calculated stresses 
are assumed to act at the center of each element. The effect of changing the 
rubber properties has a very small effect on the internal stresses as shown 
in Figure 3 for a change in the Poisson's ratio of the rubber. Figure 4 and 5 
present the interfacial stresses for two additional volume percents of rubber. 
In all of the cases shown, the radial and tangential stresses at the interface 
are almost equivalent to the principal stresses and thus the shear stresses 
(e.g. T.@) are nearly zero. In Figure 4, the hydrostatic stress as well as the 
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I -  

Tension 

Compression 

0 10 20 30 40 50 60 70 80 90 

9 
FIGURE 3 Interfacial stresses in a rubber-modified polymer (vf = 3.03%). 
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0 10 20 30 40 50 60 70 80 9 

FIGURE 4 Interfacial stresses in a rubber-modified polymer (vf = 8.45 %). 
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104 L. J. BROUTMAN AND G .  PANIZZA 

absolute value of maximum shear stress has been plotted along the interface. 
The hydrostatic stress is given by 

u1 -+ uz + 03 (ul > u2 > u3 are principal stresses) 
3 P =  

and the absolute value of maximum shear stress is 

The hydrostatic stress produces only volume changes without distortion 
and as can be seen in Figure 4, volume expansions occur for 0 < 50" and 
volume contractions occur for values of 0 > 50". The variation of the 
stresses at the pole (0 = 90") and equator (0 = 00) of a spherical rubber 
particle are shown in Figure 6 as a function of rubber filler content. If the 
curve for one of the tangential stresses at the equator (Q) is extrapolated to 
Vf = 0 percent almost perfect agreement is obtained with the theoretical 
solution of GoodieP for a single inclusion in an infinite matrix. 

The decay of stresses away from the interface are shown in Figure 7. The 
stresses have been plotted beginning from the interface and continuing 
along the boundaries A D  and CD as shown in Figure 7. Only the stress 
normal to the boundary has been plotted. It can be seen that for a low 
volume percent filler (3 %) the normal stress along CD reduces to the average 
stress, Oz, at the midpoint between two inclusions while the normal stress 
along A D  approaches zero as it should. However, if the results for higher 

8 
FIGURE 5 Interfacial stresses in a rubber-modified polymer (vf = 43.8 %). 
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0- - - 
0-2 

3 -  

4 -  

2 -  

Goodier Solution(1 87) 
0-- (0 = 0") 

- I  
- 
- q;;B =w", 

I I I I I 

FIGURE 6 Interfacial stresses at the pole and equator of a spherical rubber particle as 
a function of rubber volume percent. 

I - Vf = 3.0 3 % 
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FIGURE 7 Matrix stresses in rubber-modified polymer. 
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volume percents are plotted as shown in Figure 7 the stress concentrations 
persist even at the midpoint between two inclusions because of the close 
particle spacing. 

ELASTIC CONSTANTS 

The predicted results for the modulus of elasticity and Poisson’s ratio are 
shown in Figure 8 and Table I. Both the modulus and Poisson’s ratio are 

TABLE I 

Volume 
fraction 

rubber (%) 

Summary of comoosite predicted propertiesa 
Assumed filler properties Predicted composite properties 
E (psi) V E (psi) V a* (psi) 

3.03 
8.45 

15.50 
24.20 
38.4 
43.8 
15.50 
15.50 
15.50 

3000 
3000 
3000 
3000 
3000 
3000 
lo00 
3000 
3000 

0.48 
0.48 
0.48 
0.48 
0.48 
0.48 
0.48 
0.35 
0.50 

0.380 x lo6 0.346 
0.347 X loB 0.337 
0.307 x lo6 0.326 
0.264 x los 0.311 
0.200 x loe 0.285 
0.177 X lo6 0.279 
0.304 x los 0.319 
0.304 x lo8 0.318 
0.305 x lo6 0.316 

4610 
4557 
4308 
3928 
2937 
2509 
4191 
4162 
4162 

a Assumed matrix properties: E = 400,00 psi 
v = 0.35 

0 
.35 

- - 
O n 

.30 -2 
:: 
- 

. 25  a“ 

0 10 2 0  30 40 50 
Rubber Volume Percent  

FIGURE 8 
rubber volume percent. 

Modulus and Poisson’s ratio for rubber-modified polymers as a function of 
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reduced by the addition of rubber particles. Because of the great difference 
in modulus of the matrix and filler, the filler acts almost as a void and thus 
both composite properties are reduced. Experimental data for the modulus 
of rubber particle modified epoxy resin has been compared to the predicted 
curve in Figure 8 for rubber contents up to 10 volume percent. Excellent 
agreement is obtained. It is difficult to find additional data in the literature 
although Fletcher et ~ 7 1 . ~  and Schmitt and Keskkula2 have presented limited 
modulus data on rubber-modified polystyrene. The problem in trying to 
compare this data to the predicted values of modulus is that the theory used 
here assumed elastic behavior of the components whereas the actual behavior 
is viscoelastic. Furthermore, the amount or rate of stress relaxation is 
dependent upon the rubber content2 and if the modulus of a series of rubber- 
modified polymers with various rubber contents is determined at the same 
strain rate the results will not agree with the values predicted by this analysis. 
This analysis will give an upper bound since it assumes elastic behavior 
and would probably be accurate for tests performed at high rates of strain 
where relaxation would be minimized. It can be seen in Table I that for 
large changes in the rubber properties only slight changes in the polymer 
composite properties are produced. 

COMPOSITE CRITICAL STRESS 

The composite critical stress to initiate crazing or stress whitening is shown 
in Figure 9 as a function of volume percent rubber and also summarized in 
Table I. It has been assumed that this critical stress for the unmodified 
matrix is 8000 psi. As shown in Figure 9 the composite critical stress is 
reduced with the first addition of rubber. Although crazing may initiate 
at the low stresses indicated it may not be visible as stress whitening until 
higher stresses are reached particularly for the low rubber contents as only a 
small volume of material is affected. It should be noted that the failure model 
used here assumes perfect bonding and also assumes that crazing is initiated 
as soon as the first element reaches a critical stress condition. The first 
element to reach this condition is on the equator of the spherical particle 
at the interface. 

CONCLUSIONS 

A method has been discussed for calculating internal stesses in rubber- 
modified polymers and for predicting elastic constants as well as a critical 
stress for onset of crazing. A simple model is used to simulate the structure 
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8000 

0 2 2000- 

I I I I 
0 10 20 30 40 5 

Rubber Volume Percent 
0 10 20 30 40 5 

Rubber Volume Percent 
FIGURE 9 Critical crazing stress for rubber-modified polymers as a function of rubber 
volume percent. 

and behavior of the composite as indicated by the necessary assumptions 
listed in the paper. However, it is possible to account for interactions 
between particles which to date has been neglected in other analyses. 
Further study is being given to the problem to develop a more realistic 
model by changing from an elastic to an elastic-plastic or visco-elastic 
matrix. Also modifications in the failure model will be studied. 
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